Science

Reimagining safe drinking water on the basis of twenty-first-century science

  • 1.

    Muir, D. C. G. & Howard, P. H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40, 7157–7166 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    National Academy of Sciences Science and Decisions: Advancing Risk Assessment (National Academies, 2009); https://doi.org/10.17226/12209

  • 5.

    Paustenbach, D. J., Panko, J. M., Scott, P. K. & Unice, K. M. A methodology for estimating human exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of a community (1951-2003). J. Toxicol. Environ. Health Pt A 70, 28–57 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Hopkins, Z. R., Sun, M., DeWitt, J. C. & Knappe, D. R. U. Recently detected drinking water contaminants: GenX and other per- and polyfluoroalkyl ether acids. J. Am. Water Works Assoc. 110, 13–28 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Jarema, K. A., Hunter, D. L., Shaffer, R. M., Behl, M. & Padilla, S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol. Teratol. 52, 194–209 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Weis, C. P. The value of alternatives assessment. Environ. Health Perspect. 124, A40 (2016).

    Article 

    Google Scholar
     

  • 10.

    Jacobs, M. M., Malloy, T. F., Tickner, J. A. & Edwards, S. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ. Health Perspect. 124, 265–280 (2016).

    Article 

    Google Scholar
     

  • 11.

    Sarigiannis, D. A. & Hansen, U. Considering the cumulative risk of mixtures of chemicals – a challenge for policy makers. Environ. Health 11(Suppl 1), S18 (2012).

    Article 

    Google Scholar
     

  • 12.

    Von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Krasner, S. W. et al. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Richardson, S. D. & Plewa, M. J. To regulate or not to regulate? What to do with more toxic disinfection by-products? J. Environ. Chem. Eng. 8, 103939 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Altenburger, R. et al. Mixture effects in samples of multiple contaminants—an inter-laboratory study with manifold bioassays. Environ. Int. 114, 95–106 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Legler, J. et al. A novel in vivo bioassay for (xeno-)estrogens using transgenic zebrafish. Environ. Sci. Technol. 34, 4439–4444 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Nelson, J., Bishay, F., van Roodselaar, A., Ikonomou, M. & Law, F. C. P. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci. Total Environ. 374, 80–90 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Stalter, D., Magdeburg, A. & Oehlmann, J. Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Res. 44, 2610–2620 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Cao, N. et al. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci. Total Environ. 407, 1588–1597 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Neale, P. A. et al. Application of in vitro bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environ. Sci. Water Res. Technol. 6, 2444–2453 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Escher, B. I. et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ. Sci. Technol. 48, 1940–1956 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Conley, J. M. et al. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants. Sci. Total Environ. 579, 1610–1617 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Medlock Kakaley, E. et al. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Sci. Total Environ. 768, 144750 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Neale, P. A. & Escher, B. I. In vitro bioassays to assess drinking water quality. Curr. Opin. Environ. Sci. Health 7, 1–7 (2019).

    Article 

    Google Scholar
     

  • 25.

    Alygizakis, N. A. et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ. Sci. Technol. 52, 5135–5144 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures in our changing environment. Science 367, 388–392 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Peter, K. T., Wu, C., Tian, Z. & Kolodziej, E. P. Application of nontarget high resolution mass spectrometry data to quantitative source apportionment. Environ. Sci. Technol. 53, 12257–12268 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Schymanski, E. L. et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 407, 6237–6255 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Williams, A. J. et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J. Cheminform. 9, 61 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 30.

    CompTox Chemicals Dashboard (US EPA, 2017); https://www.epa.gov/chemical-research/comptox-chemicals-dashboard

  • 31.

    Dong, H., Cuthbertson, A. A. & Richardson, S. D. Effect-directed analysis (eda): a promising tool for nontarget identification of unknown disinfection byproducts in drinking water. Environ. Sci. Technol. 54, 1290–1292 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Vughs, D., Baken, K. A., Kolkman, A., Martijn, A. J. & de Voogt, P. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment. Environ. Sci. Pollut. Res. 25, 3951–3964 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Altenburger, R. et al. Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 512–513, 540–551 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Zwart, N. et al. High-throughput effect-directed analysis using downscaled in vitro reporter gene assays to identify endocrine disruptors in surface water. Environ. Sci. Technol. 52, 4367–4377 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Brunner, A. M. et al. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 705, 135779 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput. Mol. Sci. 6, 147–172 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    New Approach Methods Work Plan (US EPA, 2020).

  • 38.

    Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Altenburger, R., Nendza, M. & Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 1900–1915 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Rider, C. V. & Ellen, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors (Springer, 2018); https://doi.org/10.1007/978-3-319-56234-6

  • 41.

    Rabinowitz, J. R., Goldsmith, M. R., Little, S. B. & Pasquinelli, M. A. Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ. Health Perspect. 116, 573–576 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Kwiatkowski, C. F. et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 7, 532–543 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Rosario-Ortiz, F. et al. How do you like your tap water? Science 351, 912–914 (2006).

    Article 

    Google Scholar
     

  • 44.

    Kar, S. & Leszczynski, J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 7, 15 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Crittenden, J. C. et al. Predicting GAC performance with rapid small-scale column tests. J. Am. Water Works Assoc. 83, 77–87 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Topol, E. J. Individualized medicine from prewomb to tomb. Cell 157, 241–253 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Ternes, T. A. et al. Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens. Environ. Sci. Technol. 51, 308–319 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Leusch, F. D. L. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Drewes, J. E., Hemming, J., Ladenburger, S. J., Schauer, J. & Sonzogni, W. An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ. Res. 77, 12–23 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Dingemans, M. M. L., Baken, K. A., van der Oost, R., Schriks, M. & van Wezel, A. P. Risk-based approach in the revised European Union drinking water legislation: opportunities for bioanalytical tools. Integr. Environ. Assess. Manag. 15, 126–134 (2019).

    Article 

    Google Scholar
     

  • 51.

    Escher, B. I. & Neale, P. A. Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays. Environ. Toxicol. Chem. 40, 487–499 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Brack, W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal. Bioanal. Chem. 377, 397–407 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Campos, B. & Colbourne, J. K. How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environ. Toxicol. Chem. 37, 1252–1259 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Zhen, H. et al. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio Rerio) liver cell-based metabolomics approach. Water Res. 145, 198–209 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Xia, P. et al. Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells. Environ. Sci. Technol. 51, 9318–9326 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Prasse, C. Reactivity-directed analysis-a novel approach for the identification of toxic organic electrophiles in drinking water. Environ. Sci. Process. Impacts 23, 48–65 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Dodd, B. AB-1755 The Open and Transparent Water Data Act: Assembly Bill No. 1755 (California Legislative Information, 2016); https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160AB1755

  • 59.

    Mons, B., Schultes, E., Liu, F. & Jacobsen, A. The FAIR principles: first generation implementation choices and challenges. Data Intell. 2, 1–9 (2020).

    Article 

    Google Scholar
     

  • 60.

    National Research Council Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies, 2011).

  • 61.

    Drinking Water and Public Health in the United States (American Public Health Association, 2019).

  • 62.

    Allman, A., Daoutiis, P., Arnol, W. A. & Cussler, E. L. Efficient water pollution abatement. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.9b03241 (2019).

  • 63.

    A Working Approach for Identifying Potential Candidate Chemicals for Prioritization (US EPA, 2018).

  • 64.

    Janesick, A. S. et al. On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens. Environ. Health Perspect. https://doi.org/10.1289/ehp.1510352 (2016).

  • 65.

    Janesick, A. S., Dimastrogiovanni, G., Chamorro-Garcia, R. & Blumberg, B. Reply to “comment on ‘On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens’”. Environ. Health Perspect. https://doi.org/10.1289/EHP1122 (2017).

  • 66.

    Houck, K. A. et al. Comment on “On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens”. Environ. Health Perspect. https://doi.org/10.1289/EHP881 (2017).

  • 67.

    Molnar, C. et al. Pitfalls to avoid when interpreting machine learning models. Preprint at https://arxiv.org/abs/2007.04131 (2020).